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Biological Motivation

Have you ever wondered how a zebra gets its stripes?

Photo taken from whozoo.org
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Melanocytes and Pigment

Melanocytes (pigment cells) are located in the innermost layer of skin
and produce melanin (pigment).

As the hair moves through the skin, the melanin passes through and
colors the hair.

Mammalian coat patterns are determined by the distribution of the
melanocytes and the type of melanin produced.

Photo from wikipedia.org

R. F. Allen (GMU) Pattern Formation Applied Math Seminar 4 / 33



Morphogenesis

Definition

Morphogenesis is the biological process by which form and structure is
created during embryonic development.

Upon fertilization of the egg, cell division begins.

After a certain point, cells begin to differentiate. This differentiation
is determined by location within the cell cluster.

Once melanocytes are formed, what determines the type of melanin
they will produce?

Some biologists believe that this is determined by the presence of
certain activator and inhibitor chemicals, called morphogens.

Patterns in the concentrations of these morphogens are the key to the
actual patterns found in mammalian coats.
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Mathematical Motivation

Alan Turing (1912-1954)

Photo from wikipedia.org

In 1952, Turing put forth a model for spatial
pattern formulation of chemicals reacting and
diffusing throughout tissue.

The model is a system of partial differential
equations known as the Reaction-Diffusion
Model.

Such spatial patterns in the chemicals are
thought to play a role in the determination of
the type of melanin is produced by the
melanocytes, and thus impact the formation of
patterns in the mammalian coats.
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The Model

We use a continuum mechanics approach to the derivation of the model.

1 Ω ⊂ Rn is the domain. Biological considerations dictate n ≤ 3.

2 c(x, t) is the concentration of morphogens.

3 Q(x, t) is the net creation rate of morphogens.

4 J(x, t) is the flux density. We assume J is smooth.

Let B ⊂ Ω be closed and integrable. Then∫
B

ct dV =
d

dt

∫
B

c dV

=

∫
∂B

J · n dA +

∫
B

Q dV

=

∫
B

(−∇ · J + Q) dV .
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The Model (continued)

Thus we arrive at a conservation law

ct = −∇ · J + Q.

By Fick’s law, we have
ct = D∆c + Q(c),

where D is a n × n matrix with positive entries called the diffusivity and Q
is called the reaction kinetics.

Our model is a two morphogen system with

c(x, t) =

(
u(x, t)
v(x, t)

)
,

D =

(
1 0
0 d

)
,

Q(u, v) = γ

(
f (u, v)
g(u, v)

)
.
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The Model (continued)

By putting all of this together we arrive at the Reaction-Diffusion model

ut = ∆u + γ · f (u, v)

vt = d∆v + γ · g(u, v).

We will assume that no external influences are present, and thus impose
homogeneous Neumann boundary conditions on the system.

The reaction kinetics we use were proposed by Thomas.

f (u, v) = a− u − h(u, v),

g(u, v) = α(b − v)− h(u, v),

h(u, v) =
ρ · u · v

1 + u + Ku2
,

a = 150, b = 100, α = 1.5, ρ = 13,K = 0.05.
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Example Patterns

Images generated by Richard Tatum.
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Turing Instabilities

Turing concluded that the Reaction-Diffusion model may exhibit spatial
patterns under the following two conditions:

1 the equilibrium solution is linearly stable in the absence of diffusion,

2 the equilibrium solution is linearly unstable in the presence of
diffusion.

Such an instability is called a Turing instability or diffusion-driven
instability.
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Equilibrium Solution

The equilibrium solution of

ut = ∆u + γ · f (u, v)

vt = d∆v + γ · g(u, v),

in the absence of diffusion is precisely the solution to

f (u, v) = 0

g(u, v) = 0.

By Newton’s Method for systems of nonlinear equations, the equilibrium
solution is (

u0

v0

)
≈
(

37.73821081921373
25.15880721280914

)
.
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Linear Stability without Diffusion

We can linearize f and g about the equilibrium solution (u0, v0) as

f (u, v) ≈���
��:0

f (u0, v0) + (u − u0)fu(u0, v0) + (v − v0)fv (u0, v0),

g(u, v) ≈���
��:0

g(u0, v0) + (u − u0)gu(u0, v0) + (v − v0)gv (u0, v0).

The linearized Reaction-Diffusion model (without diffusion) can be written
as

wt = γAw

with

A =

(
fu(u0, v0) fv (u0, v0)
gu(u0, v0) gv (u0, v0)

)
, w =

(
u − u0

v − v0

)
.

So (u0, v0) is linearly stable if and only if

tr A < 0

det A > 0.
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Solution Stability

For a given d and γ value, we can explicitly determine the eigenvalues of
the linear system.

The eigenvalues of the linear system
are related to the eigenvalues of −∆.

The eigenvalues are indexed by k,
which correspondes to the eigenvalues
of −∆, which are n2π2 for n ∈ Z.
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Strategy for Finding Patterns

We want to see where along the equilibrium solution Turing
instabilities occur. To do this, we vary the parameters d and γ to find
bifurcations along the equilibrium solutions.

We can determine where these bifurcations occur along the trivial
solution by finding the non-trivial equilibrium solutions of the Linear
system

wt = (γA− Dλn)w,

where λn is the nth eigenvalue of −∆.

We turn the system of PDEs into a system of ODEs and utilize AUTO
to continue along these bifurcations off the equilibrium solution.
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Example Bifurcation Structure
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Our Spectral Method

For the computation of the solution, we employ a spectral method

We approximate the solution by a Fourier series. Instead of
discretizing in space, we solve for the coefficients in the Fourier series.

The homogeneous Neumann boundary conditions force the solution
to be a cosine series.

We use an inverse cosine transform to map into the spatial variable,
where we compute the non-linear term. Then we map back into
Fourier space to compute the coefficients.

Benefits of using this method

Uses the structure of the problem to solve it.

Able to solve a stiff problem.
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Current Users of This Method

Simulation Systems

Image from Hartley [4]. Image generated by Andrew Corrigan.
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Current Users of This Method

Bifurcation Analysis

Images produced by Hanein Edrees and John Price as part of the URCM program 2007-2008.
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Visualization Framework

AUTO includes a visualization utility. However, other than bifurcation
diagrams, visualization is specific to the system.

What AUTO is not able to do is visualize solutions of our Thomas
system, or any generic system. An external visualization tool is
needed.

Our Immediate Visualization Needs:

Visualize bifurcation diagrams with stability information.

Visualize solutions of the One and Two Dimensions.

Produce document-ready images.

Produce movies.
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Bifurcation Diagrams

Although AUTO is capable of displaying Bifurcation diagrams, we
found the need to manipulate the images to make them
document-ready.

AUTO records stability information, but does not provide a means by
which to view.
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Solution Visualization

Because we are having AUTO solve for the coefficients in a Fourier series,
having AUTO visualize the solution to our system would not be
meaningful.
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Merging Bifurcation & Solution Visualization
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Testimonial Usage

Image generated by Evelyn Sander.
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Scalable Architecture

R. F. Allen (GMU) Pattern Formation Applied Math Seminar 26 / 33



Pattern Formation in One Dimension

Murray’s Characterization of Stable Patterns in One Dimension

Image taken from Murray [2].
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Unanticipated Symmetric Stable Solutions

Simulation generated by Richard Tatum.
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stable.mov
Media File (video/quicktime)



Unexpected Stable Solutions

d γ Murray Calculated

200 100 1 1, 1S, 2S
200 2 1, 1S, 2S
300 2 2S

500 50 1 1, 1S
100 1 1, 1S
200 1 1, 1S
300 1 1, 1S
400 2 1, 1S

1000 50 1 1S, 2S
100 1 1, 1S, 2S
200 1 1, 1S
300 1 1, 1S
400 1 1, 1S

5000 50 1 1S, 2S
100 1 1S, 2S
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Pattern Formation in Two Dimensions
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bifurcation2d.mov
Media File (video/quicktime)



Further Developments

One Dimension

1 Further develop the bifurcation structure.

2 Determine any stable patterns not predicted by Murray.

Two Dimensions

1 Further develop the bifurcation structure.

2 Investigate the “convergence point” further.

3 Determine the stability of solutions.

Visualization Framework

1 Move from prototype to production system.

2 Include package for 3-D visualization of data.
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